Frank GK. Altered brain reward circuits in eating disorders: chicken or egg?

Curr Psychiatry Rep. 2013 Oct;15(10):396. doi: 10.1007/s11920-013-0396-x. Review.

ABSTRACT

The eating disorders anorexia nervosa (AN) and bulimia nervosa (BN) are severe psychiatric disorders with high mortality. Our knowledge about the neurobiology of eating disorders is very limited, and the question remains whether alterations in brain structure or function in eating disorders are state related, remnants of the illness or premorbid traits. The brain reward system is a relatively well-characterized brain circuitry that plays a central role in the drive to eat and individuals with current or past eating disorders showed alterations in those pathways compared to controls. Here we propose that structural and functional alterations in the insula and frontal cortex, including orbitofrontal and cingulate regions, areas that contribute to reward and anxiety processing, could predispose to developing an eating disorder and that adaptive changes in those circuits in response to malnutrition or repeated binge eating and purging could further promote illness behavior, hinder recovery and contribute to relapse. Link: Frank GK, Shott ME, Hagman JO, Mittal VA. Alterations in brain structures related to taste reward circuitry in ill and recovered anorexia nervosa and in bulimia nervosa. Am J Psychiatry. 2013 Oct 1;170(10):1152-60. doi: 10.1176/appi.ajp.2013.12101294. Abstract OBJECTIVE: The pathophysiology of anorexia nervosa remains obscure, but structural brain alterations could be functionally important biomarkers. The authors assessed taste pleasantness and reward sensitivity in relation to brain structure, which may be related to food avoidance commonly seen in eating disorders. METHOD: The authors used structural MR imaging to study gray and white matter volumes in women with current restricting-type anorexia nervosa (N=19), women recovered from restricting-type anorexia nervosa (N=24), women with bulimia nervosa (N=19), and healthy comparison women (N=24). RESULTS: All eating disorder groups exhibited increased gray matter volume of the medial orbitofrontal cortex (gyrus rectus). Manual tracing confirmed larger gyrus rectus volume, and volume predicted taste pleasantness ratings across all groups. Analyses also indicated other morphological differences between diagnostic categories. Antero-ventral insula gray matter volumes were increased on the right side in the anorexia nervosa and recovered anorexia nervosa groups and on the left side in the bulimia nervosa group relative to the healthy comparison group. Dorsal striatum volumes were reduced in the recovered anorexia nervosa and bulimia nervosa groups and predicted sensitivity to reward in all three eating disorder groups. The eating disorder groups also showed reduced white matter in right temporal and parietal areas relative to the healthy comparison group. The results held when a range of covariates, such as age, depression, anxiety, and medications, were controlled for. CONCLUSION: Brain structure in the medial orbitofrontal cortex, insula, and striatum is altered in eating disorders and suggests altered brain circuitry that has been associated with taste pleasantness and reward value. 

Altered Brain Reward Circuits in Eating Disorders: Chicken or Egg? (165 KB)